Convexity result and trees with large Balaban index

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Balaban Index of Trees

In this paper, we give a new proof that among all trees with n vertices, the star Sn and the path Pn have the maximal and the minimal Balaban index, respectively. This corrects some errors of proofs in [H. Dong, X. Guo, Character of graphs with extremal Balaban index, MATCH Commun. Math. Comput. Chem. 63 (2010) 799–812] and [L. Sun, Bounds on the Balaban index of trees, MATCH Commun. Math. Comp...

متن کامل

The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

The Balaban index of a connected graph G is defined as J(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)DG(v) , and the Sum-Balaban index is defined as SJ(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)+DG(v) , where DG(u) = ∑ w∈V (G) dG(u,w), and μ is the cyclomatic number of G. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n v...

متن کامل

The Second Largest Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

Balaban index and Sum-Balaban index were used in various quantitative structureproperty relationship and quantitative structure activity relationship studies. In this paper, the unicyclic graphs with the second largest Balaban index and the second largest SumBalaban index among all unicyclic graphs on n vertices are characterized, respectively.

متن کامل

Minimal trees and monophonic convexity

Let V be a finite set and M a collection of subsets of V . Then M is an alignment of V if and only if M is closed under taking intersections and contains both V and the empty set. If M is an alignment of V , then the elements of M are called convex sets and the pair (V,M) is called an alignment or a convexity. If S ⊆ V , then the convex hull of S is the smallest convex set that contains S. Supp...

متن کامل

On trees and the multiplicative sum Zagreb index

For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Nonlinear Sciences

سال: 2018

ISSN: 2444-8656

DOI: 10.21042/amns.2018.2.00034